Fourier Analysis Mar 10, do22
Review
A cts but nowhere diff function on R.
Let
$$de(o, i)$$
. set
 $f_{a}(x) = \sum_{n=0}^{\infty} 2^{-nd} e^{i 2^{n}x}$, $x \in \mathbb{R}$.
• By modifying the proof of f_{a} being nowhere diff slightly,
one can show the real and imaginary parts of f_{a}
are also nowhere diff. That is,
 $\sum_{n=0}^{\infty} 2^{-nd} \cos(2^{n}x)$, $\sum_{n=0}^{\infty} 2^{-nd} \sin(2^{n}x)$
are nowhere diff. (Check the outline proof in the text book).
§4.4 Heat equation on the Circle.
 3^{0} . heat conduction on the circle.
 3^{0} .
 $0 \in [o, a\pi]$
 $0 = 2\pi^{n}$, $x \in [0,1]$.

Let
$$U = U(x,t)$$
 be the temperature at point x and timet
Then U satisfies
 $\frac{\partial U}{\partial t} = C \cdot \frac{\partial^2 U}{\partial X^2}$, $x \in [0,1]$, $t > 0$.
By scaling the time t if necessary, we may obtain
a standard heat equation
 $\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial X^2}$, $x \in [0,1]$, $t > 0$. (*).
The function $U = U(x,t)$ can be extended to a function
on $(\mathbb{R} \times (0, 00)$, which is 1-periodic in X.
Here we would like to find a solution of (*), in
the mean time, we ask U to satisfy an initial condition
 $U(x, 0) = f(x)$, (**).
We first find special solutions $U(x,t) = A(x) B(t)$ of (*).
Plugging $U = A(x) B(t)$ into (*), we obtain

$$B'(t) A(x) = A'(x) B(t)$$
So
$$\frac{A'(x)}{A(x)} = \frac{B'(t)}{B(t)} = \lambda.$$
From
$$A'(x) - \lambda A(x) = 0, \quad \text{we obtain}$$

$$A(x) = \begin{cases} c_1 e^{-x} + c_2 e^{-x} & \text{if } \lambda > 0 \\ C_1 x + c_2 & \text{if } \lambda = 0 \\ c_1 e^{-x} + c_2 e^{-x} & \text{if } \lambda < 0 \end{cases}$$
To obtain a 1-periodic solution $A(x)$, we must
$$Pawe A(x) be a const or$$

$$A(x) = C_1 e^{-in2\pi x} + C_2 \cdot e^{-in2\pi x} \text{ for some } n \in \mathbb{Z}$$

$$Corresponding to \quad \lambda = -(2\pi n)^{\lambda} = -4\pi^{\lambda} n^{\lambda}$$

$$\frac{B'(t)}{B(t)} = -4\pi^{\lambda} n^{\lambda} \Rightarrow \quad B(t) = C \cdot e^{-4\pi^{\lambda} n^{\lambda} t}$$

Hence our special solution should be of form

$$U(x,t) = (C_{1}e^{i2\pi nx} + C_{2}e^{i2\pi nx}) \cdot C \cdot e^{-4\pi^{2}n^{2}t}$$

$$= (a_{n}e^{i2\pi nx} + a_{-n}e^{i2\pi nx}) e^{-4\pi^{2}n^{2}t}$$

$$Using the superposition of these special solutions
we would like to find an $(n \in \mathbb{Z})$ such that

$$U(x,t) = \sum_{n=-\infty}^{\infty} a_{n}e^{i2\pi nx} \cdot e^{-4\pi^{2}n^{2}t} \quad (***)$$
Such that

$$U(x,t) = \int_{n=-\infty}^{\infty} a_{n}e^{i2\pi nx} = f(x)$$
When putting t=0 in $(***)$, we obtain

$$\sum_{n=-\infty}^{\infty} a_{n}e^{i2\pi nx} = f(x)$$
That is, the (LHS) is the Fourier series of f on [0, i]
i.e. $a_{n} = \widehat{f}(n) = \int_{0}^{1} f(x)e^{-2\pi i nx} dx$
(In general, the Fourier series of f on [a, b] is

$$\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{i2\pi nx} = ix$$$$

$$\hat{f}(n) = \frac{1}{b-a} \int_{a}^{b} f(x) e^{-i \frac{2\pi}{b-a} nx} dx$$
Now the guessed solution of U satisfying $(*)$, $(**)$
is
$$U(x,t) = \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2\pi i nx} e^{-4\pi i^{2}n^{2}t}, \quad x \in [0,1), \quad t > 0$$
We still need/ to verify, under actin suitable condition on f , the above solution really satisfies both $(*)$ and $(**)$.
$$\frac{Proposition 1}{f}: \quad Let \quad f \quad be \quad 1-peniodic \quad function \quad on \quad IR.$$
Assume that f is Riemann integrable on $[0,1)$.
Then
$$U(x,t) = \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2\pi i nx} e^{-4\pi^{2}n^{2}t}$$
satisfies $(*)$.
Furthermore $if \quad f$ is $Cts \quad at$
 x_{0} , then $\lim_{t \to 0} U(x_{0}, t) = f(x_{0})$.